Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes.
نویسندگان
چکیده
We present an intuitive strategy for predicting the effect of sequence variation on splicing. In contrast to transcriptional elements, splicing elements appear to be strongly position dependent. We demonstrated that exonic binding of the normally intronic splicing factor, U2AF65, inhibits splicing. Reasoning that the positional distribution of a splicing element is a signature of its function, we developed a method for organizing all possible sequence motifs into clusters based on the genomic profile of their positional distribution around splice sites. Binding sites for serine/arginine rich (SR) proteins tended to be exonic whereas heterogeneous ribonucleoprotein (hnRNP) recognition elements were mostly intronic. In addition to the known elements, novel motifs were returned and validated. This method was also predictive of splicing mutations. A mutation in a motif creates a new motif that sometimes has a similar distribution shape to the original motif and sometimes has a different distribution. We created an intraallelic distance measure to capture this property and found that mutations that created large intraallelic distances disrupted splicing in vivo whereas mutations with small distances did not alter splicing. Analyzing the dataset of human disease alleles revealed known splicing mutants to have high intraallelic distances and suggested that 22% of disease alleles that were originally classified as missense mutations may also affect splicing. This category together with mutations in the canonical splicing signals suggest that approximately one third of all disease-causing mutations alter pre-mRNA splicing.
منابع مشابه
Minigene reporter for identification and analysis of cis elements and trans factors affecting pre-mRNA splicing.
All human genes contain a diverse array of cis-acting elements within introns and exons that are required for correct and efficient precursor messenger RNA (pre-mRNA) splicing. Recent computational analyses predict that most human exons contain elements required for splicing coinciding with an appreciation for the high frequency with which mutations that disruption pre-mRNA splicing cause disea...
متن کاملInterconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast
Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex featu...
متن کاملSpliceman - a computational web server that predicts sequence variations in pre-mRNA splicing
SUMMARY It was previously demonstrated that splicing elements are positional dependent. We exploited this relationship between location and function by comparing positional distributions between all possible 4096 hexamers around a database of human splice sites. The distance measure used in this study found point mutations that produced higher distances disrupted splicing, whereas point mutatio...
متن کاملDefects in pre-mRNA processing as causes of and predisposition to diseases.
Humans possess a surprisingly low number of genes and intensively use pre-mRNA splicing to achieve the high molecular complexity needed to sustain normal body functions and facilitate responses to altered conditions. Because hundreds of thousands of proteins are generated by 25,000 to 40,000 genes, pre-mRNA processing events are highly important for the regulation of human gene expression. Both...
متن کاملGenetic interactions with CLF1 identify additional pre-mRNA splicing factors and a link between activators of yeast vesicular transport and splicing.
Clf1 is a conserved spliceosome assembly factor composed predominately of TPR repeats. Here we show that the TPR elements are not functionally equivalent, with the amino terminus of Clf1 being especially sensitive to change. Deletion and add-back experiments reveal that the splicing defect associated with TPR removal results from the loss of TPR-specific sequence information. Twelve mutants wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 27 شماره
صفحات -
تاریخ انتشار 2011